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THE MOTION OF A GAS STREAM AND AN INCLUDED SOLID PARTICLE BEHIND

A COMPLEX, INCLINED-BARRIER OBSTACLE
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UDC 532.529.5

The motion of a particle in a gas stream behind an inclined barrier
on one side of a rectangular channel is studied. The forces acting on
the particle are studied, and equations are obtained for calculating
its velocity and trajectory.

A high-drag body in a channel in which the dimens~
ions of the body are greater than the dimensions of
the free part of the cross section we shall call a
complex obstacle. Cases of flow around such an obs~
tacle by a gas stream or a two-phase stream are
encountered rather often in practice. But while there
are solutions [1,2] for the rectilinear motion of the
particle, the flow around a complex obstacle has been
practically ignored.

In particular, this refers to the motion of a part-
icle of material in the air-fountain chamber of a
drier.

Let us consider the motion of a particle in a gas
stream behind an inclined barrier on one side of a
rectangular channel. According to the theory for
modeling the trajectory of solid particles, the motion
of a single solid particle in a curvilinear stream with
a given gas-velocity field is described by the equation

(3
2 F. 1)

Of the forces acting on the particle, let us con-
sider the following:
1. The weight

d (mV)

—=mg. )
2. The Archimedes force
Fy= — myg. 3)

3. The drag force undergone by the particle in its
relative motion in the gas stream

¢ Vi —
Fp= 2 e. (4)
3 Re! fo 5
We shall let
_1 G
K= Re} Te.

4. The force determined by the centrifugal acceler-
ation undergone by the particle when it rotates with
a circular velocity equal to the circular velocity of
the gas stream
dw,
dv

Fo=m (5)

5. The counterpressure, which is due to the fact
that in a curvilinear stream there is a pressure gra-
dienf across the trajectory. Here, the counter-
pressure is expressed in conventional elementary
form proposed by L. G. Loitsyanskii [4]:

dw .

5= 1y dr

(6)

6. For processes related to a change in mass,
we must introduce the reaction force

dm U.

dt @

Fo=

Substituting all of the forces into Eq. (1), we obtain

dav - dm dW
m TV 4 2(’”"’”0)( )+
+KVEe+ Mg ®)
dz

In this case, we obtained the Riccati differential
equation, which usually is not integrated in quad-
ratures. To solve this equation, we shall ignore the
change in the mass of the particle. Taking into acc-
ount, also, that

V=WV, (9)

we can write Eq. (8) for fixed mass as

AW+ V)

T dx = (m —m,) ( dW

)+ KVie. (10)

To simplify (10), we shall assume that:
1. my < m; then

F,=0 and F, =0. (11)

2. For our case, the centrifugal acceleration is
negligible [5]; then

Fy=0. (12)

Within the core of the stream, the gas velocity
can be considered fixed, and

dW+V,) _ dv,
de T oodx

The complex of values denoted by K is a function
of time and will be a constant:

K = 0.42 fp/2 = const.
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Fig. 1. Curves of dimensionless longitudinal
and transverse velocities (OC is line of zero

longitudinal velocities from [6]).
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Fig. 2. Calculated curves of relative longi-
tudinal (a) and transverse (b} velocities of

particle versus time,
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Considering all of the above, we can write Eq.
{10} in the final form

m

d‘f; = mg+KVie. (13)

Projected onto the axis of the abscissas, Eq. (13)
has the form

m dVox

= KVix. 14
P KVox (14)

K we solve it for Vgx and substitute this into Eq. (9),
we obtain an expression for.the projection of the
absolute velocity of the particle onto the axis of the
abscissas:

V=W [1— —™ ) =
* X( m+Ker,)
1
- Wy (1_w———)- (15)
1+ KW T
m

To obtain an expression for the displacement of
the particle from the axis of the abscissas, we inte~
grate (15):

m

X=WX[T——-

X

m

Projected onto the axis of the ordinates, Eq. (13)
has the form

m dVoy

= KVoy —mg. (17)
dt

Solving this equation as the previous one, we obtain
equations for the projection of the velocity unto the
axis of the ordinates

Vy =Wy —a X

Wy——a QaK
X[1+Wy+a exp— (—T)]/

(o Wy—a 2K
/ll ¥, +a exp — ( r)] (18)

and the displacement

Y =(Wy—a)t—
m[(l 2‘ZK)(—T)/
[(=v)]) 09

where a = ving/K.
To solve the derived equations, we measured the
magnitude and direction of the gas velocity in a channel

Wy—(l

XVy -{—a

8
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behind a barrier under various flow conditions. The
main part of the apparatus was a chamber ir the form
of a rectangular parallelepiped. Obstacles in the form
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Fig. 3. Calculated trajectories of

particles entering inclined barrier

from various slot sections: 1) X =

= 0; 2) 0.0247 m; 3) 0.0331; 4)
0.0419; 5) 0.05.

of inclined barriers were installed in the front part

of the chamber. Measurements were made at 45 points
on the median plane of the chamber. The angles be~
tween the gas velocity at a given point and the hori-
zontal and also the projection of the velocity onto

the axis of the ordinates were measured directly.

The results were processed in dimensionless form
and are shown in Fig. 1. Here, we can compare our
results with those of Abramovich [6] for gas flow
behind a high-drag body.

The following conclusions can be drawn from the
experiments:

1) Gas flow behind a complex barrier of the type
in question is jet flow with turbulent counterflow jets;
the cores of the forward and reverse jets are rather
sharply expressed.

2) The presence of a trausverse gas-velocity com-
ponent is found.

3) The change in gas velocity within a region of
three-fourths of the sloth width (from the side wall)
is small. With sufficient practical accuracy, in this
region we can let W = const, and the ratio of the
longitudinal and transverse velocities WY/WX = 5,65,
where Wy = 0.70WI.

Now that we have the flow pattern, we can make
a sample calculation of the trajectory of a particle
moving in a gas stream behind an inclined barrier
in a chamber with B=0.185 mand B — ¢ = 0.12 m.

From the experimental data, we find the mean
values of the dimensionless velocity components for
various chamber cross sections:

0 0.05 0,10 0.15 0.20 0.25
0.816 0.906 0.871 0,868 0.876 0.844
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Over the entire height of the jet, my = 0.860 and
mX =0.152.

The maximum longitudinal velocity Wy qx = 2.3
m/sec, and the "soaring" velocity of the particle
Wg = 7.8 m/sec.

The gas-velocity projections onto the coordinates
axes are:

Wy = my Wymax = 10.6 m/sec,

Wy =my Wymax = 1.875 m/sec.

Let us make successive calculations for the values
on the right sides of Egqs. (16), (17), (18), and (19)
for a number of values of the independent variable.
The obtained functions Vi = f(r) and Vy = f(7) are
shown in Fig. 2.

The particle trajectory is constructed from points
by plotting the displacements on the axes. The cal-
culated trajectories of a particle entering behind an
inclined barrier from various slot sections is shown
in Fig. 3.

The results are in good agreement with visual
examination of particle trajectories by high-speed
filming.

NOTATION

B is the width of the chamber, m; a is the slot width,
m; T =a/B is the channel geometry simplex; fis the
mid-cross-sectional area of a particle, mz; m is the
particle mass, kg; m, is the liquid mass in particle
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volume, kg; W is the air velocity at total apparatus
cross-section, m/sec; Wx, Wy are the velocity pro-
jections onto the coordinate axes, m/sec; Wy is the cir-
cular gas flow velocity, m/sec; My = WY/WYmax=

my = Wx/ Wy ax are the dimensionless projections

of gas velocity; V, Vg are the absolute and relative
particle velocities, m/sec; U is the dimensionless
velocity of mass removal, m/sec; 7 is the time, hr, sec;
g is the gravitational acceleration, m/sec?; p is the
material density, mz/sec; e is the unit vector.
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